

Mini Lesson

Construct the line parallel to a given line AB through a given point P.

Translation:

Let us investigate the definition of translation.

For vector \overrightarrow{AB} , the translation along \overrightarrow{AB} is the transformation $T_{\overrightarrow{AB}}$ of the plane defined as follows:

- 1. For any point *P* on the line *AB*, $T_{\overrightarrow{AB}}(P)$ is the point *Q* on \overleftrightarrow{AB} so that \overrightarrow{PQ} has the same length and the same direction as \overrightarrow{AB} , and
- 2. For any point *P* not $on \overleftrightarrow{AB}$, $T_{\overrightarrow{AB}}(P)$ is the point *Q* obtained as follows. Let *l* be the line passing through *P* and parallel to \overleftrightarrow{AB} . Let *m* be the line passing through *B* and parallel to $\varprojlim AP$. The point *Q* is the intersection of *l* and *m*.

In the figure to the right, quadrilateral *ABCD* has been translated the length and direction of vector $\overrightarrow{CC'}$. Notice that the distance and direction from each vertex to its corresponding vertex on the image are identical to that $\underbrace{of} \overrightarrow{CC'}$.

GEOMETRY

Work Time: Exercise 1:

Draw the vector that defines each translation below.

Exercise 2:

Translate each figure according to the instructions provided.

- 1. 2 units down and 3 units left. Draw the vector that defines the translation.
- 2. 1 unit up and 2 units right. Draw the vector that defines the translation.

Classwork/Homework

Name ____

Lesson 17: Translations

Use the figure and the given translation vector. Then draw the translation of the figure along the given translation vector.

COORDINATE GEOMETRY Graph each figure and its image under the given reflection.

5. $\triangle ABC$ with vertices A(-3, 2), B(0, 1), and C(-2, -3) in the line y = x

7. parallelogram RSTU with vertices R(-2, 3), S(2, 4), T(2, -3) and U(-2, -4) in the line y = x

			y		
-					
-		0			X
_		0			X
_		0			X
		0			X

6. trapezoid *DEFG* with vertices D(0, -3), E(1, 3), F(3, 3), and G(4, -3) in the y-axis

		- 1	y		
		0			X
		1	,		

8. square KLMN with vertices K(-1, 0), L(-2, 3), M(1, 4), and N(2, 1) in the x-axis

			y		
_					
		0			X